Identification of Residues Important for the Activity of Haloferax volcanii AglD, a Component of the Archaeal N-Glycosylation Pathway
نویسندگان
چکیده
In Haloferax volcanii, AglD adds the final hexose to the N-linked pentasaccharide decorating the S-layer glycoprotein. Not knowing the natural substrate of the glycosyltransferase, together with the challenge of designing assays compatible with hypersalinity, has frustrated efforts at biochemical characterization of AglD activity. To circumvent these obstacles, an in vivo assay designed to identify amino acid residues important for AglD activity is described. In the assay, restoration of AglD function in an Hfx. volcanii aglD deletion strain transformed to express plasmid-encoded versions of AglD, generated through site-directed mutagenesis at positions encoding residues conserved in archaeal homologues of AglD, is reflected in the behavior of a readily detectable reporter of N-glycosylation. As such Asp110 and Asp112 were designated as elements of the DXD motif of AglD, a motif that interacts with metal cations associated with nucleotide-activated sugar donors, while Asp201 was predicted to be the catalytic base of the enzyme.
منابع مشابه
AglQ Is a Novel Component of the Haloferax volcanii N-Glycosylation Pathway
N-glycosylation is a post-translational modification performed by members of all three domains of life. Studies on the halophile Haloferax volcanii have offered insight into the archaeal version of this universal protein-processing event. In the present study, AglQ was identified as a novel component of the pathway responsible for the assembly and addition of a pentasaccharide to select Asn res...
متن کاملGlyco‐engineering in Archaea: differential N‐glycosylation of the S‐layer glycoprotein in a transformed Haloferax volcanii strain
Archaeal glycoproteins present a variety of N-linked glycans not seen elsewhere. The ability to harness the agents responsible for this unparalleled diversity offers the possibility of generating glycoproteins bearing tailored glycans, optimized for specific functions. With a well-defined N-glycosylation pathway and available genetic tools, the haloarchaeon Haloferax volcanii represents a suita...
متن کاملDeciphering a pathway of Halobacterium salinarum N-glycosylation
Genomic analysis points to N-glycosylation as being a common posttranslational modification in Archaea. To date, however, pathways of archaeal N-glycosylation have only been described for few species. With this in mind, the similarities of N-linked glycans decorating glycoproteins in the haloarchaea Haloferax volcanii and Halobacterium salinarum directed a series of bioinformatics, genetic, and...
متن کاملHaloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer.
In this study, the effects of deleting two genes previously implicated in Haloferax volcanii N-glycosylation on the assembly and attachment of a novel Asn-linked pentasaccharide decorating the H. volcanii S-layer glycoprotein were considered. Mass spectrometry revealed the pentasaccharide to comprise two hexoses, two hexuronic acids and an additional 190 Da saccharide. The absence of AglD preve...
متن کاملN-glycosylation in Haloferax volcanii: adjusting the sweetness
Long believed to be restricted to Eukarya, it is now known that cells of all three domains of life perform N-glycosylation, the covalent attachment of glycans to select target protein asparagine residues. Still, it is only in the last decade that pathways of N-glycosylation in Archaea have been delineated. In the haloarchaeon Haloferax volcanii, a series of Agl (archaeal glycosylation) proteins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010